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A support vector machine (SVM) modeling approach for software reliability prediction
is proposed. Based on the structural risk minimization principle, the learning scheme of
SVM is focused on minimizing an upper bound of the generalization error that eventually
results in better generalization performance. The SVM learning scheme is applied to
the failure time data, forcing the network to learn and recognize the inherent internal
temporal property of software failure sequence. Further, the SVM learning process is
iteratively and dynamically updated after every occurrence of new failure time data in
order to capture the most current feature hidden inside the software failure behavior.
The performance of our proposed approach has been tested using four real-time control
and flight dynamic application data sets and compared with feed-forward neural network
and recurrent neural network modeling approaches. Experimental results show that our

proposed approach adapts well across different software projects, and has a better next-
step prediction performance.

Keywords: Support vector machines; software reliability growth prediction; failure time
data.

1. Introduction

One of the best approach to evaluate and predict software reliability quantitatively
is to use software reliability models. Software reliability is defined as the probabil-
ity of a failure free operation of software for a specified period of time in a given
environment.1 A software reliability model is a set of mathematical equations that
are used to describe the behavior of software failures with respect to time and pre-
dict software reliability performance such as the mean time between failures and
the number of residual faults.1 Most of the existing analytical software reliability
growth models depend on a priori assumptions about the nature of software faults
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and the stochastic behavior of software failure process.2–7 As a result, each model
has a different predictive performance across various projects. A general model that
can provide accurate predictions under multiple circumstances is most desirable.4–6

It has been shown that a neural network approach is a universal approximator for
any non-linear continuous function with an arbitrary accuracy.3,8 The underly-
ing failure process can be learned and modeled based on only failure history of a
software system rather than a priori assumptions.4,9 Consequently, it has become
an alternative method in software reliability modeling, evaluation and prediction.
Karunanithi et al.4,5 were the first to propose a neural network approach for soft-
ware reliability growth modeling. Adnan et al.,10,11 Aljahdali et al.,12,13 Ho et al.,14

Park et al.,6 Sitte,15 and Tian and Noore16,17 have also made contributions to soft-
ware reliability growth prediction using neural networks, and have obtained better
results compared to the existing approaches with respect to predictive performance.

Most of the published literature used neural network to model the relationship
between software failure time and the sequence number of failures. Some examples
are: cumulative execution time as input and the corresponding accumulated number
of defects disclosed as desired output,4,5 and failure sequence number as input and
the corresponding failure time as desired output.6 Those neural network modeling
approaches adopt the gradient descent based back-propagation learning scheme to
implement the empirical risk minimization (ERM) principle, which only minimizes
the mean square error during the training process and thus improves the training
accuracy. In this case, the focus of the training process is model fitting and tends to
cause overfitting. The error on the training data set is driven to a very small value
for known data, but when out-of-sample data is presented to the network, the error
is unpredictably large, which yields limited generalization capability.

As a novel type of machine learning algorithm, SVM has gained increasing atten-
tion from its original application in pattern recognition to the extended application
in function approximation and regression estimation.18–20 Based on the structural
risk minimization (SRM) principle, the learning scheme of SVM is focused on min-
imizing an upper bound of the generalization error that includes the sum of the
empirical training error and a regularized confidence interval, which will eventu-
ally result in better generalization performance. Moreover, unlike other gradient
descent based learning scheme with the danger of getting trapped into local min-
ima, the regularized risk function of SVM can be minimized by solving a linearly
constrained quadratic programming problem, which can always obtain a unique
and global optimal solution. Thus, the possibility of being trapped at local minima
can be effectively avoided.19,21–23

In this paper we propose a dynamic software reliability prediction model using
support vector machines. We model the inter-relationship among software fail-
ure time. The SVM learning scheme is applied to the failure time data, forcing
the network to learn the inherent internal temporal property of software failure
sequence. The SVM learning process is iteratively and dynamically updated after
every occurrence of new failure time data in order to capture the most current
feature hidden inside the software failure sequence. Further, the generalization
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capability of the network is greatly improved when new failure data arrives. It
mitigates the problem of overfitting and thus enhances the accuracy of software
reliability prediction. To the best of our knowledge, this is the first framework of
applying SVM to software reliability prediction. Our proposed prediction approach
is tested using four real-time control and flight dynamic application data sets. The
following sections describe the implementation of our approach.

2. SVM Learning in Function Approximation

Notation

xi n-dimensional input vector, xi ∈ �n

yi target output value, yi ∈ �
φ high-dimensional feature space mapping function
w weights vector
b bias term
R regularized risk function
||w||2 weights vector norm
C regularization constant
ε Vapnik’s linear loss function with ε-insensitivity zone
ξi, ξ

∗
i slack variables

αi, α
∗
i Lagrange multipliers

K kernel function

2.1. Estimation of real-valued functions

The basic idea of SVM for function approximation is mapping the data x into
a high-dimensional feature space by a nonlinear mapping and then performing a
linear regression in this feature space.21 Assume that a total of l pairs of training
patterns are given during SVM learning process,

(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xl, yl)

where the inputs are n-dimensional vectors xi ∈ �n, and the target outputs are
continuous values yi ∈ �. The SVM model used for function approximation is:

f(x) = w · φ(x) + b (1)

where φ(x) is the high-dimensional feature space that is nonlinearly mapped from
the input space x. Thus, a nonlinear regression in the low-dimensional input space
is transferred to a linear regression in a high-dimensional feature space.21 The
coefficients w and b can be estimated by minimizing the following regularized risk
function R18,21–24:

R =
1
2
||w||2 + C

1
l

l∑
i=1

|yi − f(xi)|ε (2)

where

|yi − f(xi)|ε =

{
0 if |yi − f(xi)| ≤ ε,

|yi − f(xi)| − ε otherwise.
(3)
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||w||2 is the weights vector norm, which is used to constrain the model structure
capacity in order to obtain better generalization performance. The second term is
the Vapnik’s linear loss function with ε-insensitivity zone as a measure for empirical
error. The loss is zero if the difference between the predicted and observed value
is less than or equal to ε. For all other cases, the loss is equal to the magnitude of
the difference between the predicted value and the radius ε of ε-insensitivity zone.
C is the regularization constant, representing the trade-off between the approxima-
tion error and the model structure. ε is equivalent to the approximation accuracy
requirement for the training data points. Further, two positive slack variables ξi

and ξ∗i are introduced. We have

|yi − f(xi)| − ε =

{
ξ for data “above” an ε tube,

ξ∗ for data “below” an ε tube.
(4)

Thus, minimizing the risk function R in Eq. (2) is equivalent to minimizing the
objective function Rw,ξ,ξ∗ .

Rw,ξ,ξ∗ =
1
2
||w||2 + C

l∑
i=1

(ξi + ξ∗i ) (5)

subject to constraints
yi − w · φ(xi) − b ≤ ε + ξi i = 1, . . . , l,

w · φ(xi) + b − yi ≤ ε + ξ∗i i = 1, . . . , l,

ξi, ξ
∗
i ≥ 0 i = 1, . . . , l.

(6)

This constrained optimization problem is typically solved by transform-
ing into the dual problem, and its solution is given by the following explicit
form:

f(x) =
l∑

i=1

(αi − α∗
i )K(xi, x) + b. (7)

2.2. Lagrange multipliers

In Eq. (7), αi and α∗
i are the Lagrange multipliers with αi × α∗

i = 0 and
αi, α

∗
i ≥ 0 for any i = 1, . . . , l. They can be obtained by maximizing the following

form:

−ε

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

yi(αi − α∗
i ) −

1
2

l∑
i=1

l∑
j=1

(αi − α∗
i )(αj − α∗

j )K(xi, xj) (8)

subject to constraints 
l∑

i=1

α∗
i =

l∑
i=1

αi

0 ≤ αi, α
∗
i ≤ C i = 1, . . . , l.

(9)
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After learning, only some of coefficients (αi − α∗
i ) in Eq. (7) differ from zero,

and the corresponding training data points are referred to as support vectors. It
is obvious that only the support vectors can fully decide the decision function in
Eq. (7).

2.3. Kernel function

In Eq. (7), K(xi, x) is defined as the kernel function, which is the inner product
of two vectors in feature space φ(xi) and φ(x). By introducing the kernel function,
we can deal with the feature spaces of arbitrary dimensionality without computing
the mapping relationship φ(x) explicitly.19 Some commonly used kernel functions
are polynomial kernel function and Gaussian kernel function.

3. Implementation of Dynamic Software Reliability Prediction

The proposed software reliability prediction system shown in Fig. 1 consists of a
failure history database and an iteratively and dynamically updated SVM learning-
predicting process. When a software failure, xi, occurs, the failure history database
is updated and the accumulated failure data (x1, x2, . . . , xi) is made available to
the SVM learning process. The number of failure data increases over time during a
dynamic system. Accordingly, the SVM learning process is iteratively and dynam-
ically updated after every occurrence of new failure time data in order to capture
the most current feature hidden inside the software failure sequence. After the SVM
learning process is complete based on the currently available history failure data,
next-step failure information, x̂i+1, will be predicted.

3.1. Formulation of the SVM-predictor

In our proposed approach, unlike the existing mapping characteristics, we model
the inter-relationship among software failure time data. More specifically, the input-
output pattern fed into the network is the failure temporal sequence. The SVM
learning scheme is applied to the failure time data, forcing the network to learn
and recognize the inherent internal temporal property of software failure sequence.
For one-step-ahead prediction, the input sequence and the desired output sequence

SVM
Learning
Process

Update
Iteratively and Dynamically

(X , X , ..., X )1 2 iXi Xi +1
�Failure History

Database
(X , X , ..., X )1 2 i -1

Fig. 1. Dynamic software reliability prediction framework.
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should have one step delay during the learning process. The desired objective is
to force the network to recognize the one-step-ahead temporal pattern. A sample
input sequence and the corresponding one-step-ahead desired output sequence is
defined as:

Input Sequence : x0, x1, . . . , xi−1, xi, xi+1, . . .

Output Sequence : x1, x2, . . . , xi, xi+1, xi+2, . . .

where xi is the failure time of the ith failure in the learning process. Once the
network is trained based on all the currently available history failure data using
the SVM learning procedure described in Sec. 2, the one-step-ahead failure time
will be predicted. For comparison purposes, we also study the long-term prediction
performance by using xi as input and xi+d as target output, where d ranges from
2 to 5.

Although our proposed software reliability growth modeling approach was orig-
inally intended for using time-domain data (actual failure time) as input to make
predictions, if it is assumed that the data collected are interval-domain data, it is
possible to develop new models by changing the input-output pair of the network
without altering the inner architecture. Further, recent studies show that using
testing time as the only influencing factor may not be appropriate for predicting
software reliability.25,26 Some environmental factors should be integrated. Examples
of related environmental factors are program complexity, programmer skills, test-
ing coverage, level of test-team members and reuse of existing code, etc.25,27 Our
proposed modeling approach is flexible to incorporate the related environmental
factors by changing the scalar input to a vector input, if the values of the envi-
ronmental factors corresponding to either failure time data or failure count data
exist.

3.2. Scaling of the input and output data

All the inputs and outputs of the SVM network are scaled and normalized within
the range of [0.1, 0.9] to minimize the impact of absolute scale. For this purpose,
the actual values are scaled using the following relationship28:

y =
0.8
∆

x +
(

0.9 − 0.8 × xmax

∆

)
(10)

where, y is the scaled value we feed into our network, x is the actual value before
scaling, xmax is the maximum value in the samples. xmin is the minimum value
among all the samples, and ∆ is defined as (xmax − xmin).

After the training process, we test the prediction performance by scaling back
all the network outputs to their actual values using the following equation:

x =
y − 0.9

0.8
× ∆ + xmax (11)
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4. Experimental Results

The performance of our proposed approach is tested using the same real-time control
application and flight dynamic application data sets as cited in Park et al.6 and
Karunanithi et al.4 We choose a common baseline to compare our results with
related work cited in the literature. All four data sets used in the experiments are
summarized as follows:

DATA-2: Real-time command and control application consisting of 21,700 assem-
bly instructions and 136 failures.

DATA-11: Flight dynamic application consisting of 10,000 lines of code and 118
failures.

DATA-12: Flight dynamic application consisting of 22,500 lines of code and 180
failures.

DATA-13: Flight dynamic application consisting of 38,500 lines of code and 213
failures.

4.1. Performance metrics

When testing a proposed model, it is necessary to quantify its prediction accuracy in
terms of some meaningful measures. The following statistical metrics are used for
comparing prediction performance, namely, Next-Step-Predictability represented
by Relative Prediction Error (RE), and Average Relative Prediction Error (AE).

RE =
∣∣∣∣ x̂i − xi

xi

∣∣∣∣ (12)

AE =
1

(n − imin + 1)

n∑
i=20

∣∣∣∣ x̂i − xi

xi

∣∣∣∣ × 100 (13)

where x̂i is the predicted value of failure time, and xi is the actual value of failure
time. 20 ≤ i ≤ n, and n is the number of failure time data accumulated in real-
time. Next-Step-Predictability is obtained by the percentage of the one-step-ahead
predicted values fall within a pre-determined range of RE compared to their actual
observed values. The larger the value of Next-Step-Predictability, or the smaller the
value of AE, the closer are the predicted values to the actual values.

4.2. Test results

The results of the Next-Step-Predictability represented by relative prediction error
(RE) using the four data sets are shown in Table 1. For example, using DATA-12,
95.63% of the next-step predicted values fall within 5% of their actual observed
values. The results show that our proposed SVM predicting approach provides
highly accurate prediction capability.

Table 2 summarizes the results of modeling the temporal inter-relationship
among software failure time sequence using our proposed SVM approach. We use
the same data sets as cited in Park et al.6 and Karunanithi et al.4 in order to



www.manaraa.com

July 26, 2005 13:8 WSPC/122-IJRQSE SPI-J072 00184

316 L. Tian & A. Noore

Table 1. Performance results of next-step-predictability.

Next-Step-Predictability (RE ≤ 5%)

DATA-2 DATA-11 DATA-12 DATA-13
87.07% 93.88% 95.63% 95.31%

Table 2. Comparison of average relative prediction error
(AE%) for next-step prediction.

Data Sets Proposed FFNN RNN FFNN
SVM Approach (Ref. 6) (Ref. 4) (Ref. 4)

DATA-2 2.44 2.58 2.05 2.50
DATA-11 1.52 3.32 2.97 5.23
DATA-12 1.24 2.38 3.64 6.26
DATA-13 1.20 1.51 2.28 4.76

establish a common baseline for comparison purposes. Park et al.6 applied fail-
ure sequence number as input and cumulative failure time as desired output in
feed-forward neural network (FFNN). Based on the input-output learning pair of
cumulative execution time and the corresponding accumulated number of defects
disclosed, Karunanithi et al.4 employed both feed-forward neural network (FFNN)
and recurrent neural network (RNN) structures to model the failure process. These
results are also summarized in Table 2. For example, using our proposed approach
with data set DATA-12, the average relative prediction error (AE) is 1.24%. This
error is lower than the results obtained by Park et al.6 (2.38%) using feed-forward
neural network, Karunanithi et al.4 (3.64%) using recurrent neural network, and
Karunanithi et al.4 (6.26%) using feed-forward neural network. In all four data
sets, the next-step prediction results show that using our proposed SVM approach
yields a lower average relative prediction error compared to other neural network
approaches, and is easily implemented to predict failures dynamically. Figures 2–5
show the predicted and actual values of the failure time for each data set in both
short-term (d = 1) and long-term (2 ≤ d ≤ 5) situations.

5. Conclusion

In this paper, a novel support vector machine modeling approach for dynamic
software reliability prediction based on software failure time data is proposed.
Unlike traditional modeling approaches, we model the inter-relationship among
software failure time data. The SVM learning scheme is applied to the failure
time data, forcing the network to learn and recognize the inherent internal tem-
poral property of software failure sequence. Further, the SVM learning process is
iteratively and dynamically updated after every occurrence of new failure time
data in order to capture the most current feature hidden inside the software fail-
ure sequence. Experimental results show that our proposed approach adapts well
across different software projects, and has a better performance with respect to
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Fig. 2. Prediction performance using DATA-2.
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Fig. 3. Prediction performance using DATA-11.
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Fig. 4. Prediction performance using DATA-12.
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Fig. 5. Prediction performance using DATA-13.
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the Next-Step-Predictability compared to the existing neural network modeling
approaches.
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